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Abstract

Cortical neuron networks are able to maintain self-
sustained activity in the absence of any input, while exhibit-
ing a high sensitivity to external stimulation. An attempt to
aggregate both behaviors is presented in this paper, based
on a hybrid network which combines both a resonant and an
integrator component. Resonance is shown to contribute to
self-sustained activity, while the integrator component,cou-
pled with resonance, can render the network more respon-
sive to input. Simulation results show that the self-sustained
regime can still be maintained, even when introducing a sig-
nificant integrator component in the network. The analysis
of the responsiveness to input reveals also other interesting
phenomena, related to some experimental findings in real
biological circuits, like ON- and OFF-response properties.

1. Introduction

The study of large-scale networks of spiking neurons is
relevant for understanding brain function and discovering
new paradigms of computation [12], while providing the
basis for the implementation of biologically inspired arti-
ficial intelligence [6]. Such networks have been studied in
the context of biologically realistic modeling, ranging from
persistent neural activity [1] to generic models of computa-
tion [13] and even robot control [4].

Unlike neurons in classical artificial neural networks,
spiking neurons incorporate spatial-temporal information
in computation [17]; their output is expressed in terms of
spikes. Since they are based on dynamic event-driven pro-
cessing, spiking neurons open up new horizons for superior
models with an increased computational power. Moreover,
spiking neuron models are closer to their biological counter-

parts [8] than classical models of artificial neural networks.
One of the key properties of biological neurons is their

ability to integrate incoming electrical signals (called ”post-
synaptic potentials”). In the classical view, neurons change
their membrane potential according to excitatory or in-
hibitory incoming postsynaptic potentials, such that their
probability of firing spikes (also called ”action potentials”)
is increased or decreased, respectively [2]. Apart from the
integrative behavior, neurons can also display resonant ac-
tivity; they exhibit a preference to input stimulation of a
given frequency [5], [10].

It has been suggested that resonant behavior can con-
tribute to dynamical homeostasis of the activity of large-
scale recurrent networks of neurons, regulating excitability
and stabilizing network activity, to avoid ”epileptic” explo-
sions [14], [15]. However, in general, resonance at the neu-
ron level keeps network responsiveness to input low, damp-
ening especially high frequency stimulation. On the con-
trary, networks of integrator neurons tend to be very respon-
sive to input but highly unstable [16].

Here, we study how the combination of resonance and
integration can yield stable dynamics as well as responsive-
ness to external input in heterogeneous networks of res-
onant (RES) and regular spiking (RS) neurons [11]. We
show that self-sustained behavior can be preserved in the
hybrid network, in certain conditions and that the response
profile of the network reproduces some patterns found ex-
perimentally, in real neural circuits. We conclude that the
resonator population plays a central role in the network dy-
namics and that the interaction between RS and RES neu-
rons contributes to network responsiveness.

2. The spiking neuron model

One of the first models describing the process of ac-
tion potential generation has been the one introduced by



Hodgkin and Huxley [9]. Since then, several spiking neuron
models have been proposed. They tried to preserve, as much
as possible, the neural dynamics of the initial model, while
reducing its computational complexity as to make it feasi-
ble for large scale simulation. The spiking neuron model
considered here is part of the same category. Introduced by
Izhikevich in [11], it is a two-dimensional approximation
of the Hodgkin Huxley model. This particular variant was
preferred due the fact that it can reproduce a rich set of dy-
namical behaviors of the cortical neurons, while remaining
simple enough to be computationally feasible. The model
is defined by a system of differential equations:

dv

dt
= 0.04v2 + 5v + 140 − u + I (1)

du

dt
= a · (bv − u) (2)

where

• v - membrane potential,

• u - recovery variable,

• I - total post-synaptic current,

• a, b - model parameters.

When the membrane potential reaches the value of
30mV , a spike is recorded, the membrane potential is re-
set to its rest value, and the recovery variable is updated:

v = c; u = u + d (3)

wherec - rest potential,d - a parameter of the recovery vari-
able.

Various settings for the parametersa, b, c and d give
different dynamic behaviors, such as adaptation, or post-
inhibitory rebound. This study focuses on two particular
configurations for the parameters, namely the ones corre-
sponding to the regular spiking regime (a = 0.02, b = 0.1,
c = −65mV , d = 8) and the resonator regime (a = 0.1,
b = 0.26, c = −65mV , d = 2).

The behavior of the RS neuron is not that of a true in-
tegrator; instead, its dynamics is intermediary -between an
integrator and a resonator- exhibiting adaptation [11], [15].
The resonator component of the RS regime had to be con-
sidered when analyzing the dynamics of the heterogeneous
network of spiking neurons. Consequently, a simpler inte-
grator model was needed as reference for the comparison -
the leaky integrate-and fire model.

The integrate-and-fire model has become ubiquitous in
practice, as one of the simplest representations of neuronal
dynamics. It is a class 1 excitable system; it shows a mono-
tonic increase in response when increasing the stimulation
frequency. In an electrical interpretation, the model corre-
sponds to a capacitor and a resistor connected in parallel (in

our case,R = 1MΩ, C = 10µF ). The IF formalism
models only one variable, namely the membrane potential
(v) of neurons:

τ
dv

dt
= −v + R · I (4)

where

• v - membrane potential,

• τ = R ·C - membrane time constant (typically10ms),

• R - membrane resistance,

• I - total post-synaptic current.

In all cases, the total input current (I) received by the neuron
is computed as the sum of all post-synaptic currents (psc)
contributed by each synapse:

psc(t) = AsynWsyngsyn(t−1)·(Esyn − Upost (t − 1)) (5)

gsyn(t) = gsyn(t − 1) · e
−

1

τsyn (6)

where:psc - post-synaptic current,Asyn - maximal synap-
tic amplitude, Wsyn - the synaptic strength (Wsyn ∈

[0, 1]), gsyn - the instantaneous synaptic conductance,Esyn

- the reversal potential of the synapse (0mV for excitatory
synapses and−90mV for inhibitory synapses),Upost - the
membrane potential of the post-synaptic neuron,τsyn - the
time constant for the decay of the synaptic conductance af-
ter the neurotransmitter release (typically10 − 20ms).

Each time an afferent spike reaches the synapse, the in-
stantaneous conductance is incremented:

gsyn = gsyn + 1 (7)

3. Experimental work and results

The network structure considered in this study is hetero-
geneous, including RS and RES neurons in certain well-
established proportions (0− 100%, with a20% increment).
Following the biological model,20% of all neurons are in-
hibitory, while the remainder population is excitatory. Ef-
ferent synapses of a neuron are all of a single type, as spec-
ified by Dale’s law. Inhibitory neurons are randomly se-
lected from the global neuron population, with a uniform
distribution. Synaptic connectivity is10%, selected at ran-
dom; the same configuration applies also in the case of the
input connections. The bias of randomly selecting the con-
nectivity and neuron types is reduced by averaging the re-
sults for experiments performed on various network con-
nectivity patterns and, for each such configuration, taking
several random assignments of the spiking neuron types (10



Figure 1. Percentage of hybrid networks that
reach a self-sustained regime, for various RS
proportions.

network structures x 10 type assignments = 100 trials per
experiment).

For the analysis presented here, the synaptic amplitude
is tuned as to obtain a stable self-sustained dynamics in the
case of the resonant-only network. Future analysis should
include a study of the behavior of the network, as the synap-
tic amplitude is varied.

3.1. Resonance and self-sustained behavior

Recent literature recognizes that most activity in the
brain is internally generated [16], thus emphasizing the im-
portance of self-sustained activity in modeling neural cir-
cuits.

In order to achieve a self-sustained regime, excitation
should be able to maintain firing levels high enough as to
prevent the global network activity from dying out. At the
same time, inhibition should prevent an explosion of the ac-
tivity, owed to the recurrent network connectivity. Consid-
ering these two aspects, it appears that a precise balance
between excitation and inhibition is required for achieving
self-sustainability. However, other solutions have been pro-
posed in the literature; most of them impose some structural
constraints on the network architecture.

In a different approach, [15] it is suggested that the prop-
erty of resonance of neurons could play an important role in
the homeostasis of neuronal activity. The study shows that
large microcircuits of resonant neurons can exhibit stable
activity even in the absence of external stimulation. More-
over, the self-sustainability of such networks is very robust
and, unlike other models, does not require a precise balanc-
ing of excitation and inhibition. In this context, it is interest-
ing to study to which extent this behavior can be preserved
in heterogeneous networks.

Figure 2. Population rate in the stable regime,
as measured when varying the RS propor-
tions.

The paper analyzes a range of heterogeneous networks;
we measure the self-sustainability state and its correspond-
ing stable rate, while varying systematically the proportion
of RS neurons. A network is considered to have left the self-
sustained regime either when the population rate is null for
some specified time-interval (the network has ’died out’), or
when the rate is maintained over a certain high threshold for
the same duration (saturation). A value of40ms was set for
both intervals, in our case. For each self-sustained network,
the population rate in the stable regime is estimated as an
average over the last50ms of the trial, using a sliding win-
dow technique [3]. As described before, 100 trials are gen-
erated for each proportion of RS neurons, to yield a better
rate estimation. Each trial lasts1s, time being discretized
in 1ms units. Results of this experiment are presented in
figures 1 and 2.

The average rate for the entire population decreases lin-
early when the number of RS neurons is increased. The
explanation of this phenomenon resides in the reduced re-
sponsiveness of the RS population, the overall dynamics of
the system being driven by the resonant component, as will
be detailed in the following section.

3.2. Network responsiveness

A wide range of models have been proposed for explain-
ing the input sensitivity of neural networks. A smaller num-
ber of solutions achieve a self-sustained activity, but it is dif-
ficult to find models that encompass the two dimensions to-
gether. This is most unfortunate, since an aggregated anal-
ysis of both aspects is critical for a better understanding
of how higher level cognitive functions are achieved in the
neural circuits [16].

In the input sensitivity analysis for the model, the re-
sponse to a a Poisson input is measured for various RS-



Figure 3. Post-Stimulus Time Histogram aver-
aged over 100 hybrid networks, for a Poisson
input and various RS proportions. a. Input
frequency = 5Hz. b. Input frequency=30Hz. c.
Input frequency=50Hz.

Figure 4. Average PSTH for hybrid networks
with no inhibitory neurons (as function of
%RS). The input frequency is 30Hz.

RES heterogeneous networks; the input frequency ranges
between5 and50Hz. We compute thePost-Stimulus Time
Histogram( PSTH) of the network for a time interval of
500ms. The stimulus length is200ms; to avoid superim-
posing effects, a1s interval is established between each two
subsequent input presentations. Results are averaged over
20 trials. The initial stimulus is presented only after the net-
work activity has stabilized, to eliminate any bias induced
by the initial RES activity.

The PSTH is computed as an average over the population
of networks and the stimulus presentations. Each bini of
the 500 bins, measures an estimate of the number of spikes
occurringi ms after the initial stimulus presentation. In the
end, the PSTH is computed, as:

PSTH(i) =
#spikesi

N · Ntrials · Tbin

(8)

where

• #spikesi - total number of spikes for bini;

• N - population size (100);

• Ntrials - number of trials (20, in our case),

• Tbin - bin size, expressed in seconds (10−3 in our
case).

The results of the study are presented in figure 3.
The first observation is that the global rate of the pop-

ulation decreases (almost linearly) as the proportion of RS
neurons is increased. This result is consistent with the anal-
ysis presented for the case of self-sustained regime, when
no input was presented to the network.

Secondly, there is a large increase in the amplitude of the
population rate after the initial stimulus presentation (the



Figure 5. Average PSTH for hybrid networks
with strong inhibition, when varying RS per-
centage. The input frequency is 30Hz.

first 10 − 50ms). This phenomenon is consistent with bi-
ological recordings (what is referred in the literature as the
ON-response[7]). The initial peak is followed by a sta-
bilization of the global population rate, through a damped
oscillation. A similar dynamics appears immediately after
the stimulus is removed (t = 200ms), a phenomenon called
OFF-response. After a temporary fall in activity, a new pop-
ulation rate peak occurs (OFF-response), smaller than the
one for the ON-response, after which the network reaches a
new stable regime. The plots show that periods of higher ac-
tivity correspond to times of disruption, which require some
system reorganization; when such variations occur, the net-
work increases its rate to adapt to the new conditions. Re-
sponse amplitudes are larger for high frequencies, probably
owed to the fact that higher inputs induce larger disruptions
in the system.

Several potential mechanisms could be proposed to ex-
plain the phenomena described above. The interplay be-
tween excitation and inhibition is one possible candidate;
another is the resonator component of the regular spiking
neuron and the coupling between different neuron popula-
tions. Each of the alternatives is explored in a series of ex-
periments, presented in the following.

In the initial experiment, inhibition was set to be lower
than the level of excitation. Two different settings were also
analyzed. In the first trial, the inhibition was eliminated
completely, as shown in figure 4. It can be seen that remov-
ing inhibition does not significantly alter the initial result.

The same conclusion can be reached when increasing in-
hibition to the level of excitation (figure 5). In this case, the
dynamic interplay between excitation and inhibition leads
to oscillationsin the population, but the ON-response phe-
nomenon still occurs. Oscillations occurring in spiking neu-

Figure 6. PSTH results in the RES/IF hybrid
network, for a 30Hz Poisson input and vari-
ous RS percentages.

Figure 7. Population PSTH for the RES/RS
network, with strong inhibition, for different
RS%.



ron networks have been previously described in the litera-
ture [16]; they are reported to increase when strengthening
the inhibitory component, which was also the case in our
experiment. We conclude that the interplay between inhi-
bition and excitation does not account for the generation of
ON-/OFF-responses. However, it does contribute to the os-
cillatory activity of the network.

In the third experiment (figure 6), the RS neurons were
replaced by IF, to eliminate completely the resonator behav-
ior in the integrator population. Again, the change did not
affect in any way the network ON-response characteristics.

Lastly, we have measured the PSTH of the individual
RS and RES populations (figure 7). The results of this ex-
periment show distinctively that the RES population is the
one inducing the global network response, since the RS ac-
tivity is significantly smaller than that of RES. The ON-
response in the RES population is consistent in all the pa-
rameter range considered; the OFF-response is less visible
for some values at the boundaries of the parameter space.

If small enough (20−30%), the RS population shows an
ON-response characteristic similar to that of RES, which
is slightly shifted in time, relative to the RES peak; this
suggests that it may be a result of integration owed again
to the high RES activity.

4. Conclusions

This paper has attempted to determine how the combi-
nation of resonance and integration can yield both stable
dynamics and responsiveness to external input in heteroge-
neous networks of resonant and regular spiking neurons.

It was shown that the self-sustained regime can still be
maintained in the hybrid network, even when introducing
a significant integrator component. As a general conclu-
sion of the responsiveness experiments, it may be stated
that the ON- /OFF-response effects in the described neu-
ral architecture are mediated by the resonator population.
However, at this stage, it is still unclear if the response prop-
erties are directly influenced by the coupling between res-
onant and integrator populations. For example, the large
ON-responses observed when the RS population dominates
(see figure 3.c., when 80% of neurons are RS) cannot sim-
ply be explained in terms of integrator responsiveness ( as
shown in figure 7). It might be that external excitation leads
to a slight activation of the RS population, which in turn
could mediate the rapid formation of more active groups of
RES neurons, thus explaining the fast rise of activity during
the ON-response.

Even though the networks presented here have a sim-
ple, random architecture, they are able to reproduce inter-
esting experimental observations about the response prop-
erties of cortical networks. Not only they exhibit ON- and
OFF-responses, but they also display a pronounced dip in

the PSTH response following the initial peak, similar to that
reported for the cat and monkey visual cortex [7].

Further studies are required to elucidate the mechanism
of ON-/OFF-responses in such networks, including an anal-
ysis of the evolution of hybrid networks as a function of the
strength of the synaptic connectivity.
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