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Abstract: 

 

We investigated spontaneous activity and excitability in large networks of artificial spiking 

neurons. We compared three different spiking neuron models, namely the integrate-and-fire (IF), 

regular spiking (RS) and resonator (RES). First, we show that different models have different 

frequency-dependent response properties, yielding large differences in excitability. Then, we 

investigate the responsiveness of these models to a single afferent inhibitory/excitatory spike, and 

calibrate the total synaptic drive such that they would exhibit similar peaks of the post-synaptic 

potentials (PSP). Based on the synaptic calibration, we build large microcircuits of IF, RS and 

RES neurons and show that the resonance property favors homeostasis and self-sustainability of 

the network activity. On the other hand, integration is producing instability while it endows the 

network with other useful properties, such as responsiveness to external inputs. We also 

investigate other potential sources of stable self-sustained activity and their relation to the 

membrane properties of neurons. We conclude that resonance and integration at the neuron level 

might interact in the brain to promote stability as well as flexibility and responsiveness to 

external input and that membrane properties, in general, are essential for determining the 

behavior of large networks of neurons. 
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INTRODUCTION 

 

Neocortical networks of neurons in the brain have two remarkable properties: they can produce 

activity patterns in the absence of any sensorial input (Arieli et al. 1995) and exhibit vigorous 

responses when stimulated (Frazor et al. 2004). The internal activity produced by the brain 

independently of external stimulation is present even during sleep cycles (Evarts 1964; Steriade 

2006) or during sensory deprivation (Dupont et al. 2003; Celikel et al. 2004). It has been 

suggested that self-sustained activity contributes to higher cognitive processes, such as working 

memory, decision-making and goal-directed behavior (Wang 2003) and it has been recently 

shown that spontaneous brain activity plays an important role in synaptic maturation during 

development (Gonzalez-Islas and Wenner 2006). 

There are two different concepts associated with self-sustained activity: spontaneous activity 

and persistent activity. Spontaneous activity is related to ongoing dynamics that is not triggered 

by external events (Arieli et al. 1995) while persistent activity is triggered by an external 

event/stimulus and is maintained in a task relevant manner (Miyashita and Chang 1988). 

Persistent activity is produced on top of already existing spontaneous activity. Our main interest 

in this study was to investigate possible mechanisms underlying spontaneous activity in models 

of spiking microcircuits and their implications on the responsiveness to external inputs. 

Spontaneous activity and the responsiveness to external inputs are very much interrelated. To 

be able to maintain robust ongoing activity in the absence of stimulation, a neural circuit must 

possess some homeostatic mechanisms (Turrigiano and Nelson 2004; Davis 2006) that avoid the 

“dying out” (activity completely ceases after some period of time) or the “explosion” (the 

network becomes epileptic) of activity. In turn, such regulation mechanisms might impair the 

responsiveness of the circuit to external stimuli. This issue becomes critical if the circuit receives 
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weak inputs and must amplify them to attain a robust response. Indeed, recent evidence suggests 

that thalamic inputs to the cortex are quite weak. They represent less than 10% of the total 

number of afferent connections in layer IV (Douglas and Martin 2004). Nevertheless, cortical 

networks are very responsive to inputs (Frazor et al. 2004) and they exhibit stable spontaneous 

activity that is interacting with input sensory signals to produce a combined effect (Arieli et al. 

1996; Arieli 2004; Tsodyks et al. 1999). We suggest that stable spontaneous activity and 

responsiveness to inputs might be supported by very different mechanisms and that there might 

be a complex interplay between the two. 

 

Spontaneous activity 

There have been numerous attempts to model self-sustained activity in artificial spiking neural 

networks. While persistent activity relies on specific neuronal circuitry (Durstewitz and Seamans 

2006), spontaneous activity is usually modeled using an external, non-specific, “background” 

input (van Vreeswijk and Sompolinsky 1996; Latham et al. 2000; Plesser and Gerstner 2000; 

Hansel and Mato 2001; Roxin et al. 2004). The background input is unrelated to the stimulus and 

is thought to arise mostly from distant cortical or subcortical structures (Amit and Brunel 1997; 

Durstewitz and Seamans 2006). 

A background input is necessary for producing spontaneous activity, because stable networks 

of integrator neurons have a tendency to become quiescent without external excitation (Hansel 

and Mato 2001). The background input can be modeled either deterministically (van Vreeswijk 

and Sompolinsky 1996) or stochastically (Brunel and Hakim 1999; Latham et al. 2000; Plesser 

and Gerstner 2000; Hansel and Mato 2001; Roxin et al. 2004). The vast majority of models use 

the stochastic approach. A random, usually Poisson process is used in such cases to account for 

the external background drive that allows the network to maintain a baseline activity level and 
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avoid “dying out”. Such a strategy has also been motivated by the known spontaneous, 

apparently random spiking of cortical neurons that would, at least in part, be induced by the 

random background fluctuations (Tuckwell 1989; Softky and Koch 1993). Indeed, there is 

increasing evidence that spontaneous neurotransmitter (spike independent) axonal release induces 

miniature synaptic potentials (minis) that play an important role in promoting spontaneous 

network activity during sleep and anaesthetized states (Paré et al. 1997, 1998; Timofeev et al. 

2000). However, in the awake state, the common belief that neurons fire in a stochastic, 

unreliable way has been recently challenged (Gur and Snodderly 2006), thus the influence of the 

random background is probably differentially expressed depending on the cortical state. 

It is very likely that in the cortex many mechanisms contribute to the establishment of stable 

spontaneous activity. Spontaneous miniature synaptic events and non-cortical sources of 

excitation provide a “lower bound” for cortical activity, preventing it from “dying out”. On the 

other hand, the neocortical circuitry is highly recurrent, hence the danger of self-amplified 

“runaway excitation” leading to the “explosion” of activity (Vogels et al. 2005). This raises the 

need for an “upper bound” on neural activity (Davis 2006). The dynamic regulation of network 

activity is supported by numerous homeostatic mechanisms, such as spike-timing dependent 

plasticity (STDP) with hard or soft bounds (Abbott and Nelson 2000), short-term synaptic 

facilitation/depression (Abbott and Regehr 2004), synaptic scaling (Turrigiano and Nelson 2004), 

intrinsic neuronal plasticity (Zhang and Linden 2003) or spike-frequency adaptation (Benda and 

Herz 2003; Gabbiani and Krapp 2006). Among these, intrinsic plasticity and synaptic scaling are 

slow, compared to the response timescale of cortical networks (tens of milliseconds). Synaptic 

facilitation/depression and STDP can be relatively fast and act at the level of synapses. At the 

cellular level, spike-frequency adaptation is a fast process that could help networks avoid firing 

saturation (Gabbiani and Krapp 2006). To the best of our knowledge, in the context of 
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spontaneous activity, no fast homeostatic mechanism relying on intrinsic membrane properties 

has been put forward so far. Here, we propose membrane resonance as a possible candidate. 

 

Responsiveness to inputs 

It is generally recognized that fast homeostatic processes supporting the stability of network 

activity also impair its responsiveness to external stimuli (Vogels et al. 2005). Slower regulating 

mechanisms such as intrinsic plasticity and synaptic scaling are not expected to directly interfere 

with response dynamics on a short time scale. However, fast mechanisms like short-term 

depression and spike-frequency adaptation can in principle prevent robust excitatory waves from 

propagating since they reduce the gain in the network (Turringiano and Nelson 2004). Such 

control mechanisms can dramatically reduce the responsiveness of the circuit to external 

stimulation. Reconciling stable spontaneous dynamics with network responsiveness is still an 

unresolved issue (see Vogels et al. 2005 for a review). 

 

In cortical networks, the regulation of the “lower bound” of activity is achieved both by 

integrating “background/external” excitatory signals (minis/non-cortical drive) and through 

intrinsic dynamical properties of the network, such as reverberating activity. The “higher bound” 

is regulated through network properties (that stem from a plethora of mechanisms ranging from 

synaptic to cellular and structural properties) and also through the global modulation of the 

cortical state. Here, we first study the possibility of regulating both the “lower” and “higher” 

bounds of activity exclusively through network properties, in the absence of any external drive. 

Only a few studies reported so far a success in this direction (Kumar et al. 2005; Mureşan et al. 

2005) because of the known difficulty of stabilizing the activity of strongly coupled recurrent 

neural microcircuits (Vogels et al. 2005) for the general case (stable reverberating circuits can be 
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produced using specialized circuitry; see: Hansel and Mato 2001; Ben-Yishai et al. 1995; 

Durstewitz and Seamans 2006). We propose next that membrane properties of individual neurons 

could play a very important role in both spontaneous activity and network responsiveness. We 

explore the properties of different neural models that are commonly used in building large scale 

networks of spiking neurons. More specifically, the leaky integrate-and-fire model (Dayan and 

Abbott 2001) and two variants of the Izhikevich (Izhikevich 2003) model (regular-spiking and 

resonator neurons) are investigated here. The differences in terms of excitability and frequency-

dependent response will be emphasized. To bring the different models of neurons to comparable 

activity regimes, we first calibrate the synaptic strength required to obtain the same post-

synaptic-potential (PSP) peak to an incoming spike. Based on such calibrations, we are able to 

compare large networks of integrate-and-fire, regular-spiking and resonator neurons and 

investigate their ability to produce stable spontaneous activity in the absence of any external 

drive. We also investigate the responsiveness of such networks to external inputs and we discuss 

different patterns of activity that are produced by the integrative or resonant behavior of network 

neurons. We finally investigate the relationship of our findings with other known processes 

contributing to spontaneous activity such as the influence of miniature synaptic potentials and 

synaptic delays.  
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METHODS and RESULTS 

 

Integration or resonance? 

Since the early studies of Sherrington (Sherrington 1906) it has been mostly believed that 

neurons behave as integrators. The integrative property of neurons implies that responses of 

neurons to stimulation increase monotonically with the increasing input frequency. 

However, recent experimental evidence suggests that apart from their integrative properties, 

neurons also exhibit frequency dependent behavior or resonance, having preferred stimulation 

frequencies in the range of 5-20 Hz for pyramidal neurons and 5-50 Hz for interneurons 

(Hutcheon and Yarom 2000; Fellous et al. 2001). The resonant property implies that neurons 

have a maximal response to a preferred stimulation frequency. It has been shown that the original 

Hodgkin-Huxley model (Hodgkin and Huxley 1952) behaves more like a resonator than an 

integrator (Izhikevich 2000). 

In spite of such evidence, most modeling studies on networks of spiking neurons use the simple 

leaky integrate-and-fire model (IF). While it is computationally easy to simulate, the model does 

not exhibit realistic dynamics comparable to cortical neurons (Izhikevich 2004). The IF neuron 

belongs to class 1 excitable systems and increases its response with the increasing stimulation 

frequency monotonically. The IF formalism models only one variable, namely the membrane 

potential (v) of neurons (Dayan and Abbott 2001): 

IRv
dt
dv

⋅+−=τ        (1) 

where, v – membrane potential, τ – membrane time constant (typically 10 ms), R – membrane 

resistance (taken here to be 10 MΩ), I – total post-synaptic (input) current. 
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The Hodgkin-Huxley-type (HH) models fit the dynamics of real neurons better than the linear 

integrate-and-fire formalism which cannot reproduce the variable threshold behavior of cortical 

cells. However, the original HH model is computationally demanding, rendering it unfeasible for 

the study of large networks of neurons (Izhikevich 2004). Recently, a more efficient model has 

been proposed (Izhikevich 2003).  It is based on two-dimensional reduced Hodgkin-Huxley  

approximations and it is very efficient in terms of computational complexity. The Izhikevich 

model (Izhikevich 2003) discussed here uses two variables to describe the state of the neuron: the 

membrane potential (v) of the neuron and a recovery variable (u): 

Iuvv
dt
dv

+−++= 140504.0 2      (2) 

)( ubva
dt
du

−⋅=        (3) 

where v – membrane potential, u – recovery variable, I – total post-synaptic current, a,b – 

parameters. 

When the membrane potential reaches a value larger than 30 mV, a spike is recorded and the 

membrane potential is reset to its resting value, while the recovery variable is increased by a 

given amount: 

duucv +== ;        (4) 

where c – resting potential, d – a parameter that is added to the recovery variable. 

Depending on the concrete value of the four parameters (a,b,c,d), the model can reproduce a 

plethora of behaviors of cortical neurons, like adaptation, post-inhibitory rebound, etc 

(Izhikevich, 2003). Of special interest to our study is the regular spiking (RS) regime (a = 0.02, b 

= 0.1, c = -70 mV, d = 8) and the resonator (RES) regime (a = 0.1, b = 0.26, c = -70 mV, d = 2). 

While in the regular spiking regime the neuron is behaving intermediately between an integrator 

and a resonator, exhibiting spike-frequency adaptation, in the resonator regime the membrane 
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potential tends to oscillate after stimulation and the neuron can be switched between silent and 

spiking modes by appropriately timed stimuli (Izhikevich 2002). 

We model the total input current (I) that a neuron receives as the sum of all post-synaptic 

currents (psci) produced at each synapse i: 

)( postsynsynsyni vEgWApsc −⋅⋅⋅=     (5) 

syn

g
dt
dg

τ
−=         (6) 

where, psci – post-synaptic current contributed by synapse i, Asyn – an amplitude parameter that 

determines the maximal amplitude of the psc, Wsyn – the synaptic strength (Wsyn  ∈ [0..1]), g – the 

instantaneous synaptic conductance, Esyn – the reversal potential of the synapse (taken 0 mV for 

excitatory synapses and -90 mV for inhibitory synapses), vpost – the membrane potential of the 

post-synaptic neuron, τsyn – the time constant for the decay of the synaptic conductance after the 

neurotransmitter release (typically 10-15 ms). 

In our simulations, for one given network, and one given model of neuron, there is only one 

synaptic amplitude (Asyn) for all excitatory/inhibitory synapses respectively. Only the synaptic 

weights (Wsyn) are different, yielding different coupling efficacies for different synapses (see Eq. 

5). The synaptic amplitude can be regarded as a scaling factor that allows one to calibrate the 

range of coupling efficacies in the entire network.  

Each time an afferent spike reaches the synapse, the instantaneous conductance is increased by 

a constant value (here 1): 

1+= gg         (7) 

Throughout this study, most models (except the Izhikevich neuron) have been integrated 

iteratively, using the Euler method, with a step of 1 ms. To insure numerical stability for the 

Izhikevich model, the integration step of the membrane potential equation (Eq. 2) is 0.5 ms (see 
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Izhikevich 2003). The relatively large step for the Euler integration provides a reasonable 

precision for the particular models studied here and has the advantage of allowing for large 

networks to be simulated in reasonable time. 

We consider next three models of neurons: integrate-and-fire (IF), regular spiking (RS) and 

resonator (RES). In the first step of our analysis we assessed the frequency-response properties of 

these three models. 

 

Subthreshold behavior 

Biological neurons can exhibit different dynamics depending on the regime in which they 

operate (Hutcheon and Yarom 2000). In subthreshold conditions, many neurons display marked 

resonant properties, i.e. have preferred input frequencies to which they respond maximally. A 

common technique for characterizing subthreshold behavior is to stimulate the neuron with a 

subthreshold sinusoidal current having gradually increasing frequency (also called ZAP function) 

and computing the frequency-dependent impedance of the neuron (Puil et al. 1986). We used 

here the following subthreshold input stimulus: 

)sin(2.0)( βα ttI ⋅⋅=       (8) 

where I(t) – the time varying input current injected into the neuron, α – a constant used to scale 

the frequencies (taken to be 2*PI*10-7), β – the exponent that determines how fast the frequency 

increases (chosen with a value of 3 here). 

The frequency-dependent impedance Z(f) in the subthreshold regime can be computed by 

dividing the frequency spectra of the responses (membrane potential fluctuations around the 

resting potential) by the frequency spectrum of the input current, for each frequency component f  

(Puil et al. 1986): 
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)(
)()(

fcurrentinputofFFT
fresponsevoltageofFFTfZ =     (9) 

where, Z(f) – the input impedance of the neuron for subthreshold stimulation with frequency f, 

FFT(f) – denotes the Fast Fourier Transform value for the frequency component f. 

We have stimulated IF, RS and RES neurons with an input ZAP current lasting for 1024 ms (a 

duration that facilitates easy computing of FFT, our sampling bin size being 1 ms) and computed 

the frequency spectra of the membrane potential deviations from rest for the three types of 

neurons (FIG. 1). For each neuron type, we next determined the frequency dependent impedance 

by dividing the spectra of the membrane potentials by the spectrum of the input current, and 

taking the complex amplitude as a value for the impedance (Puil et al. 1986). 

The membrane potential response and impedance reveal a passive behavior for the IF neuron, 

just like expected for the case of an RC electrical circuit (Hutcheon and Yarom 2000). 

Remarkably different, the RS neuron’s impedance has a very broadly tuned peak at about 40 Hz, 

remaining rather unselective for all frequencies. Its impedance is low compared to the other 

neurons. The RES neuron is a clear resonator, acting as a band pass filter (Hutcheon and Yarom 

2000). It is well tuned to a central frequency of 52 Hz and has cutoff frequencies of ~25 Hz and 

~84 Hz (see FIG. 1). 

Insert FIG. 1. about here. 

 

Suprathreshold behavior 

The subthreshold behavior is not guaranteed to be maintained in suprathreshold regimes 

(Hutcheon and Yarom 2000). Since the interesting regime is when neurons are often crossing the 

threshold and fire action potentials, it is very important to study how they respond with output 

spikes to input spike trains. 
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To determine the suprathreshold behavior of IF, RS and RES neurons we have considered a 

simple experiment: one neuron of each type was stimulated with input spike trains having various 

frequencies. The input spike trains had been generated using a homogenous Poisson process with 

a fixed rate (the input frequency) yielding an exponential distribution of the inter-spike intervals 

(ISI) (Softky and Koch 1993). The Poisson model for the input spike train has been chosen for 

simplicity, since the same results would be obtained with a perfectly regular spike train having 

the same firing rate. However, in the latter case, the response function is not as smooth as in the 

former case. Using a Poisson input enables the averaging over multiple trials and hence a 

smoother approximation of the response function (for the perfectly regular case, averaging is 

irrelevant since there is no variability in the input). 

Input frequencies were varied from 5 to 100 Hz in steps of 5 Hz. For each frequency of interest, 

a Poisson input spike train was produced, in a window with a length inversely proportional to the 

frequency (see FIG. 2). The window size was increased for low frequencies, such that, on 

average, a model neuron received roughly equal number of input spikes for all frequencies. In 

addition, we varied the strength of the synapse that delivered the post-synaptic current to the 

model neurons. 

Insert FIG. 2. about here. 

We monitored the total number of postsynaptic spikes induced by the input spike-trains for 

various input synapse amplitudes. For each input frequency f and each synaptic amplitude Asyn, 

the response of the model neurons Ψ(f,Asyn) was computed as an average of the total number of 

postsynaptic spikes over 200 trials (each trial with a different instantiation of the input spike 

train). 

t

N

i
s

syn N

iN
Af

t

∑
==Ψ 1

)(
),(      (10) 
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where, Ψ – the response of a model neuron, f – the frequency of the Poisson input spike train, Asyn 

– the amplitude of the afferent synapse used to stimulate the model neuron, Nt – the number of 

trials (200 in our case), Ns(i) – the number of postsynaptic spikes in trial i. 

In addition to the response function Ψ, we computed the firing rate R of the model neurons by 

dividing the response function by the length of each window Ws corresponding to each frequency 

f, as indicated in FIG. 2, right. 

)(
),(

),(
fW

Af
AfR

s

syn
syn

Ψ
=      (11) 

Results in FIG. 3 show very different behaviors of the three models. The integrate-and-fire 

model behaves as expected, increasing its response with the increasing input frequency 

monotonically. The higher the stimulation frequency, the higher the response of the IF neuron is 

(FIG. 3, top-left).  

The regular spiking and resonant neurons behave quite differently. The first observation is that 

their response is non-linear and non-monotonic. Both RS and RES models exhibit two different 

regimes of activity that depend on the coupling strength (synaptic amplitude). For weak coupling, 

the responses are increased for frequencies between 25-60 Hz, indicating resonance phenomena 

(FIG. 3, middle-left and bottom-left). Resonance is more pronounced in the case of the RES 

model (FIG. 3, bottom-left). For intermediate coupling, both models show an abrupt transition 

(indicated by arrows in FIG. 3, left), more pronounced for RES neurons, shifting the preferred 

frequency to very low frequencies while high frequencies are heavily dampened. In this second 

activity regime, that holds for strong coupling as well, neurons tend to get less and less 

responsive as the input frequency is increased. At a closer inspection, the response landscapes of 

the two models are quantitatively different. The most prominent feature of the RES model is its 

relatively good response even for weak coupling and its more saturated regime for strong 
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coupling. These features will become important for network homeostasis, as we shall discuss 

later. 

Insert FIG. 3. about here. 

We have to mention that the response function Ψ depicted in the left part of FIG. 3 is isolating 

the frequency response component for suprathreshold stimulation. However, this doesn’t mean 

that the firing rate of RS and RES neurons is not increasing for higher stimulation frequencies. 

The firing rate R of model neurons, shown in FIG. 3 right, reveals more qualitative differences 

between models. Although all neurons tend to increase their firing rate for higher input 

frequencies, the RS and RES neurons have a more moderate slope for the increase. Moreover, the 

RES neuron exhibits vigorous responses even for weak coupling, while its firing rate has a 

tendency to saturate for high input frequency and strong coupling.  

The response function (Ψ) and firing rate responses (R) of the models suggest that the IF 

neurons have purely integrative properties. The RS neurons behave intermediately between 

integrators and resonators, having a quite rapid increase in firing rate as a function of input 

frequency and coupling. Finally, the RES model exhibits pronounced resonance, while having 

reliable responses for weak coupling and saturating for high coupling and high input frequency. 

 

Excitability 

To compare networks based on different neural models, one must first ensure that the level of 

excitability is similar across all networks. In other words, for the same network architecture but 

different models for individual neurons, we must have different synaptic strengths in order to 

obtain the same level of activity. To get a better understanding of the large differences in 

excitability, we stimulated the model neurons (IF, RS, RES) with a single afferent spike. The 

post-synaptic current is delivered once via an inhibitory synapse (Asyn = 0.01, Esyn = -90 mV, τsyn 
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= 15 ms) and once via an excitatory synapse (Asyn = 0.01, Esyn = 0 mV, τsyn = 20 ms). For each 

model neuron, the hyperpolarization / depolarization of the membrane is recorded, relative to the 

resting potential. The peak of the membrane voltage excursion is computed as well, in order to 

give a quantitative estimate of the different levels of excitability. 

The RES model is the most excitable, showing large oscillations of the membrane potential 

after stimulation (FIG. 4). At the other extreme, the RS neuron is much less excitable than IF and 

RES. For example, the peak of the depolarizing PSP of the RES model (2.6 mV) is more than 5 

fold larger than in the case of the RS neuron (0.51 mV). The weak response of RS neurons is 

explained by their low input impedance (FIG. 1). 

Insert FIG. 4. about here. 

 
An important observation has to be made here. Networks relying on different models of 

neurons are only comparable if the relative synaptic strengths are properly scaled to account for 

the excitability ratio between models.  Since the two-dimensional reduced HH model for RS and 

RES neurons is highly nonlinear, we do not expect that the post-synaptic potentials would scale 

linearly as a function of the synaptic amplitude Asyn. Hence, we need to compute, for all synaptic 

amplitudes of interest, the actual ratio between the PSP peaks of the different models, to allow for 

a realistic calibration. As shown in FIG. 5, the RES model is exhibiting a strong nonlinear scaling 

in its response, relative to the RS model’s response and a more moderate nonlinearity with 

respect to the IF model. At the same time, the IF-RS pair scales linearly, and has a constant ratio 

of excitability for all synaptic amplitudes. 

Using the results in FIG. 5, one can calibrate the synaptic amplitudes for networks of IF, RS 

and RES neurons, such that the maximal PSP amplitude per afferent spike is roughly the same in 

all networks. However, due to different dynamical behaviors of the models to different input 

spike statistics, the calibration will not be perfect. The PSP is the same only if initially the 
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membrane is at rest. The actual PSP is also a function of the current state of the postsynaptic 

neuron and the scaling becomes somewhat imprecise for general neuron dynamics. Moreover, 

since the synaptic strengths in the network can take different values for different synapses, the 

real amplitudes of the post-synaptic currents that each neuron receives will be different (see eq. 

5). This implies that the actual ratio of excitability for individual neurons might be different. 

Because of the nonlinear scaling between some of the models, a perfect calibration of the 

networks is not possible. Since we shall only compare networks with exactly the same 

architecture, we expect that such effects will not be dramatic. In general however, it is not clear 

how a perfect calibration could be achieved. 

In any case, the plots in FIG. 5 show that the IF and RS networks can be properly calibrated, 

the IF and RES networks can be satisfyingly calibrated, while the RES and RS pair is the hardest 

to calibrate and hence to compare because of the nonlinear scaling of their excitability ratio. 

For clarity purposes, throughout the rest of the paper, synaptic coupling strengths are reported 

relative to a reference, namely the coupling strength in RES networks (Asyn-RES). The coupling in 

the other networks is by default rescaled to obtain the same excitability level using results in FIG. 

5 and the following formula: 

RES

RSorIF
synsyn PSPPeak

PSPPeak
RESARSorIFA

_
_

⋅=    (12) 

where, the ratio between peak PSP amplitudes is reported in FIG. 5. 

Insert FIG. 5. about here. 

Microcircuits 

In the following, we explored in what way the properties of individual neurons influence 

network dynamics. We investigated large networks of IF, RS and RES neurons also referred to as 

“neural microcircuits” (Maass et al. 2002; Grillner at al. 2005). 
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The investigated microcircuits consist of 1000 neurons, wired randomly with conductance 

based synapses (see Eq. 1 to 7). Among neurons, 80% are excitatory (IF, RS or RES) and 20% 

inhibitory (fast-spiking – FS – see Izhikevich 2003). Neurons have, on average, a 5% probability 

of synapsing with any other neuron in the network, such that the average number of synapses in 

the circuit is on the order of 50000. The wiring is non-homogeneous, in the sense that the number 

of afferent synapses per neuron varies, depending on the random instantiation. We also studied, 

as control conditions, homogeneous circuits, where the number of afferents per neuron is constant 

(only the identity of afferents is random) and also other connectivity ratios (2%, 3%, 4%). 

The synaptic strengths (Wsyn) are randomly drawn from a uniform distribution, taking values in 

the range (0..1]. The synaptic amplitudes (Asyn) are calibrated differently, depending on the 

experiment, as will be explained later. The networks are simulated using the “Neocortex” neural 

simulator developed by the authors (Mureşan and Ignat 2004). 

There is a high degree of randomness involved in building such networks. The spatial 

distributions of excitatory/inhibitory neurons, the synaptic strengths, the connectivity patterns, are 

all randomly instantiated. Very different networks can be produced and these might exhibit very 

different behaviors. In the absence of any genetically guided architecture, our networks are just 

random guesses. Moreover, since the behavior of networks with different architectures can be 

dramatically different it becomes very difficult to generalize the observed phenomena. 

Nonetheless, our goal here is to compare how the firing property of individual neurons can yield 

qualitatively different network behaviors (FIG. 6). For this purpose, it is possible to compare 

networks that have the same architecture and differ only in terms of the neuron models used to 

build them. 

Insert FIG. 6. about here. 
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To compare the networks’ behavior that is induced by the different response properties of 

neurons, we always built 3 identical networks for each experiment. In each case, the networks 

have the same architecture, the only difference being the type of excitatory neuron used: IF, RS 

and RES, respectively. To ensure that the three networks are architecturally identical, once the 

synaptic connections for a network are instantiated, they are copied identically to the other two 

networks. In all three cases, the inhibitory interneurons are modeled as fast-spiking (FS) neurons 

(Izhikevich 2003). As mentioned, the three identical networks are instantiated for every 

experiment, such that an IF based network for example, is not the same in two different 

experiments (due to the random instantiation). 

To calibrate the three types of networks, the amplitudes (Asyn) for excitatory and inhibitory 

synapses are rescaled. All excitatory synapses targeting an excitatory neuron, for example, share 

the same synaptic amplitude (the same is true for inhibitory synapses, but with a different 

synaptic amplitude value). The only difference between different synapses of the same type 

(excitatory or inhibitory) is their weight. Since Asyn for excitatory and inhibitory synapses are 

global parameters of the network, one is able to calibrate entire networks, by scaling them 

according to the described calibration technique (see section Excitability and Eq. 5). 

 

Self-sustainability and stability 

We first assessed the ability of different networks to produce self-sustained, spontaneous 

activity in the absence of any external input. Intuitively, a recurrent network is able to sustain its 

activity better (in the total absence of any external input), if the excitatory synapses are stronger. 

However, the stronger the synapses, the more likely it is that the network will be rendered 

unstable, eventually leading to “explosive” activity behavior (epileptic activity). 
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We investigated 2000 triplets of networks, each network in a triplet having the same 

architecture but different models for excitatory neurons (IF, RS and RES) and different scaling 

amplitudes for the synapses (Asyn). The architecture that is used to build a triplet is randomly 

instantiated, as described previously. In addition, we used another population of 100 input 

neurons, each connected randomly to 2% of neurons in the network. 

For each triplet, the networks are tested for their ability to sustain spontaneous activity after a 

brief step-like input. The input is only used here for initializing the activity in the networks and is 

NOT to be considered an external event triggering persistent activity. The concept of persistent 

activity associates an external event / trigger that would change the already existing spontaneous 

activity to the specific multi-stable activity encoding the task (Miyashita and Chang 1988). Thus, 

even though there is an initial input, we are still studying spontaneous activity considering the 

input as a mere initialization of the network activities. 

The input neurons were forced to spike, for 20 ms at the beginning of each trial, according to 

independent Poisson processes with a mean firing rate of 30 Hz. For the remaining 200 ms (the 

trial length is 220 ms), the networks evolve freely. For each network, we monitored the time 

dependent population firing rate (Π): 

tN
tttnt

Δ⋅
Δ+

=Π
),()(       (13) 

where, n(t,t+Δt) – is the total number of spikes in the network during the time interval t→t+∆t; N 

– the number of neurons in the network (here 1000); ∆t – the time bin used to integrate the model 

(here 10-3 s). 

During 200 ms of free evolution without any input, we computed the time of activity survival 

for all three network types in a triplet, as a function of synaptic amplitude (FIG. 7a). The synaptic 

amplitude of the RES model is taken as a reference, while the amplitudes for IF and RS networks 

are scaled according to the scaling factors determined in section Excitability (see FIG. 5; both 
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excitatory and inhibitory synapses are scaled). The duration of activity survival is considered to 

be the duration of “normal” activity, until either a “die out” or an “explosive” event is detected. 

The “die out” event is defined as the moment in time after which the network does not fire any 

spike any more. The “explosive” event is considered to occur when the network starts firing at 

unusually high rates (more than 300 Hz) and maintains this high activity for at least 10 

consecutive time bins (10 ms), indicating saturation. We also computed the percentage of 

networks that exhibit explosive behavior as a function of the synaptic coupling (FIG. 7b). 

The results reported in FIG. 7a are averaged over 2000 triplets of networks. Each of the 2000 

triplets is tested for all synaptic amplitudes, yielding a total of 20000 tests. As expected, the IF 

networks are the poorest in maintaining self-sustained activity. Regardless of the coupling 

strength, the IF-based networks’ activity can only survive, on average, less than 30 ms after the 

ceasing of input stimulation. Their activity either dies out, or starts exploding very early, even for 

moderate synaptic couplings (FIG. 7b). The RS based networks are not significantly better in 

sustaining their activity as compared to IF networks. Over a certain threshold of the synaptic 

coupling, RS networks tend to become very unstable, most networks becoming “explosive” (FIG. 

7b). This is partly due to the fact that synaptic amplitudes in RS networks are much higher than in 

the other 2 cases, as a result of the scaling to reach similar excitability (according to FIG. 5, RS 

excitatory synaptic amplitudes have to be almost 4 fold stronger than for the case of IF networks 

during calibration). The impedance of RS neurons, relatively constant over different input 

frequencies (FIG. 1), is also likely to play a role in such unstable behavior. Also worth noting is 

the very abrupt transition of IF and RS networks from stable to “explosive” dynamics (FIG. 7b). 

Insert FIG. 7. about here. 

The most interesting behavior is exhibited by RES networks. For very weak coupling, their 

activity does not survive after the ceasing of the input. However, for moderate coupling they start 
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sustaining more and more reliably their spontaneous activity, after the initialization phase (with 

input). There is a threshold-like transition from quiescent to self-sustained behavior, as suggested 

by FIG. 7a. The large standard deviation in FIG. 7a for a certain coupling (Asyn-RES = 0.003) 

indicates that some RES networks can sustain their activity for a long time, while for some others 

the activity dies out rather quickly, depending on the network architecture. For strong coupling 

however, the RES networks become deterministically self-sustained. They can robustly maintain 

their activity for as long as the experiment lasts (here 200 ms). Most RES networks with 

moderate and strong coupling can sustain their activity, usually infinitely long (Mureşan et al. 

2005). Moreover, RES networks never displayed explosive behavior for the range of synaptic 

couplings considered here (FIG. 7b). 

Since only the IF and RS networks have “explosive” activity regimes, we investigated next the 

dynamics of their population rate (Π), immediately before and after an “explosion” was recorded. 

We wanted to assess the dynamics of the “explosive” process, getting an insight into how the 

saturation of dynamics in the two types of networks comes about. We recorded the population 

rate starting 10 ms before and up to 10 ms after the “explosive” event was detected (FIG. 8). The 

threshold for “explosion” detection was 300 Hz, the event being validated only if the network 

remained over the threshold for at least 10 ms. In FIG. 8a, the IF and RS networks’ population 

rates were averaged over all networks exhibiting “explosive” activity and all synaptic coupling 

strengths. The slope of the population rate increase is higher for IF networks than RS networks, 

indicating a faster activity buildup. 

Next, we determined, for each synaptic coupling strength for which “explosion” occurs, the 

dynamics of the population rate for IF (FIG. 8b) and RS (FIG. 8c) networks. The coupling 

strengths reported are the reference synaptic strengths of the RES networks (Asyn-RES) like in 
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FIG. 7, while the IF and RS real coupling strengths (Asyn-IF and Asyn-RS) are rescaled according 

to FIG. 5, as discussed before. 

 Insert FIG. 8. about here. 

The first observation is that the IF networks’ activity becomes “explosive” for smaller reference 

couplings than RS networks (consistent with FIG. 7b). Furthermore, for the same reference 

coupling, the slope of the rate increase is significantly higher for IF networks (FIG. 8b and c). For 

example, at a reference coupling of Asyn-RES=0.01, the slope of population rate increase for IF 

networks is 233 Hz/ms, compared to only 183 Hz/ms for RS networks (although the real coupling 

strength is much higher for RS networks: Asyn-RS = 0.05 compared to Asyn-IF = 0.0153). 

At closer inspection, results in FIG. 8b, reveal even more interesting aspects. For weaker 

couplings, the population rates are relatively high 10 ms before the “explosive” event. This 

indicates a slower buildup of the activity. In such cases, a network must already have significant 

activity before “exploding”, to be able to cross the threshold. Moreover, the population rate 

increases almost linearly in relatively low coupling regimes (Asyn-RES = 0.04) for IF networks 

and moderate coupling (Asyn-RES = 0.06) for RS networks. For strong coupling, both types of 

networks exhibit “explosive” activity that increases exponentially fast in the first few 

milliseconds (in spite of low initial activity), and then saturates giving rise to a sigmoidal-like 

“explosion curve” (FIG. 8b and c). The slope of the rate increase depends on the coupling 

strength. Coupling is thus a major factor determining how unstable a network is (FIG. 7b) and 

how fast its activity “explodes” (FIG. 8b and c). 

To explain the behavior of the IF, RS and RES networks, we need to recall the response 

landscapes presented in FIG. 3. The IF neuron does not exhibit any particular frequency 

preference, acting more like a passive RC circuit. Low input frequencies make it hardly firing 

while high input frequencies produce vigorous firing. As a result, when IF networks get into low 
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activity regimes the neurons tend to fire even less, pushing the network into a cascaded ceasing of 

activity. On the other hand, when a group of IF neurons gets very active, it tends to entrain more 

and more neurons with it, producing an avalanche effect and leading to the saturation of the 

network. Since the slope of the rate increase for IF neurons is high (FIG. 3 top-right), “explosive” 

activity settles in very easily when coupling in the network is high enough. Inhibition cannot 

compensate for this, since inhibitory neurons represent only 20% of neurons in the network and 

have on average the same synaptic efficacies as excitatory synapses. If inhibitory synapses were 

rendered stronger the IF networks’ activity would die out very fast. The commonly employed 

solution to this problem has been to reduce the excitatory coupling in the network and add some 

unspecific background current to excitatory neurons, such as to keep the network alive (Amit and 

Brunel 1997; Brunel and Hakim 1999; Latham et al. 2000; Plesser and Gerstner 2000; Hansel and 

Mato 2001; Roxin et al. 2004). 

RS networks are somewhat more stable than IF networks for moderate coupling regimes. As 

their excitability landscape suggests (FIG. 3 middle-right), RS neurons tend to have a bit smaller 

slope of the rate increase, while being more responsive for low frequencies than IF neurons. 

However, for strong coupling, the RS networks become very unstable (FIG. 7b). This is probably 

due to the relatively high input impedance of the RS neurons in the high frequency range. The 

“explosion” mechanism is similar to that of IF networks, but the slope of the population rate 

increase is smaller (FIG. 8c). 

Finally, RES networks are the most stable and able to sustain robust spontaneous activity. This 

is due to two key properties. First, RES neurons are easy to excite even for weak inputs (FIG. 3 

bottom-right). When the activity in the RES network drops, it is still easy to reignite it, if a 

minimal group of neurons in the network is providing enough input to the others. Second, when 

the activity in the network builds up, RES neurons tend to get less and less responsive, as 
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indicated by their firing rate activity landscape (FIG. 3 bottom-right). Thus, RES neurons can 

maintain a stable activity regime that keeps the network alive. For moderate synaptic amplitudes, 

the RES neurons tend to settle into a preferred low coupling regime, with a firing rate of 30-50 

Hz, matching the resonant frequency of the membrane (FIG. 1 and FIG. 3 bottom-left, low 

coupling resonant regime). If the synaptic coupling is increased, the RES networks can fire 

sustained at quite high rates (60-80 Hz) without becoming epileptic. We have to mention that 

RES networks are usually able to maintain their spontaneous activity for indefinitely long. 

Another interesting phenomenon is that the coupling with inhibitory neurons as well as the 

membrane resonance of RES neurons produces remarkable oscillatory activity (FIG. 6). 

Two major factors influence the stability of the studied networks, namely the synaptic 

connectivity and the size of the network. Results reported here are taken for the case of relatively 

highly coupled networks (5%) and non-homogeneous connectivity (each neuron has a different 

number of afferents, depending on the random instantiation of the network). We have studied, as 

control conditions, networks with lower connectivity (2%, 3%, 4%) as well as with homogeneous 

(constant number of afferents per neuron, but randomly selected) and non-homogeneous 

architectures. All the reported results are qualitatively preserved with remarkable accuracy. 

Quantitatively there are differences that are expected. For lower connectivity, the thresholds for 

“explosive” activity of IF and RS networks, as well as the threshold for self-sustainability of RES 

networks are higher (expected, since lower connectivity is similar to scaling down synaptic 

efficacies). The activity of IF and RS networks has a lower probability of becoming “explosive”, 

but their self-sustained time drops significantly. For smaller network sizes, the “explosion” 

thresholds increase while the self-sustained durations of IF and RS networks drop. Additionally, 

the transition from stable to unstable (IF and RS) and from quiescent to self-sustained (RES) 

regimes becomes less sharp compared to FIG. 7. This is because smaller networks with less 
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synapses have a more heterogeneous structure and behavior (some are more “explosive”, some 

are less) yielding a smoother average compared to FIG. 7a and b. 

A more important observation is related to the oscillatory behavior of the networks. It seems 

that homogeneous RES networks are much more prone for developing oscillations than their 

heterogeneous counterparts. This phenomenon is probably related to the homogeneous / uniform 

number of synapses per neuron in homogeneous networks, yielding a balance of excitation across 

the population and favoring the development of synchronized assemblies promoted by resonance. 

Revealing the exact mechanism for the development of such oscillations goes beyond the scope 

of the present study, however these results emphasize the importance of the network architecture. 

 

Network excitability 

A very important issue related to network dynamics is the response property to external 

stimulation. A well known property of visual sensory cortices is the pronounced response of cells 

to preferred visual stimuli, referred to as “ON-response” (Frazor et al. 2004).  

We wanted to investigate next in what way the response properties of various types of neurons 

(IF, RS and RES) influence network responsiveness to external input. It is worthy of mentioning 

that the “ON-response” is a phenomenon related to the changes in firing rates of neurons 

immediately after stimulus onset, relative to the baseline spontaneous activity. To be able to 

study the response properties of various networks to external input, we needed to insure first that 

the networks exhibit spontaneous dynamics. 

Since only RES networks are self-sustained without input, the only way to compare the 

responsiveness of all networks is to endow IF and RS networks with spontaneous activity as well. 

As outlined before, it is very difficult if not impossible to obtain IF and RS networks with stable 

spontaneous activity without external drive. We will next introduce a background current to these 
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two networks such that they would exhibit spontaneous dynamics, in line with the common 

practice (Brunel and Hakim 1999; Hansel and Mato 2001; Latham et al. 2000; Plesser and 

Gerstner 2000; Roxin et al. 2004). 

The first requirement is that coupling strengths in IF and RS networks are weak enough to 

prevent “explosive” behavior (see FIG. 7b). We next chose weak synaptic couplings for these 

two classes of networks, respecting the excitability ratios in FIG. 5 (Asyn-IFexc = 0.0009, Asyn-IFinh 

= 0.0014, Asyn-RSexc = 0.0035, Asyn-RSinh = 0.005). Consequently, weak coupling leads to a fast 

loss of activity (FIG. 7a) and introduces the need for background current in order to enable 

spontaneous, ongoing activity. Each IF and RS neuron receives thus an additional, random 

background current at each time step, drawn from a uniform distribution between 0 and Imax. The 

total input current to an IF or RS neuron becomes now the sum of the synaptic and background 

currents. 

bck
synapsesall

i IpscI += ∑       (14) 

where, I – the input current to the neuron (see Eq. 1 and 2); psci – the postsynaptic current 

delivered by an afferent synapse i (the sum runs over all afferent synapses); Ibck – is the 

background input current, randomly drawn from a uniform distribution between 0..Imax at each 

time step (1 ms). 

For the RES networks an intermediate coupling (Asyn-RES = 0.003) is chosen such that the 

network would maintain a robust self-sustained activity that is usually in the range dictated by the 

resonant frequency for RES neurons (30-50 Hz). The background current amplitudes for IF and 

RS networks were adjusted during a calibration phase, such that the spontaneous population rates 

(Π) of these networks would closely match the reference RES population rate, with a tolerated 

error of ±5%. On average, the background current amplitudes of IF and RS networks required to 

attain the reference firing rate were Imax-IF = 4.73 nA and Imax-RS = 27.30 nA, respectively. The 
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calibration indicates that RS networks required even more input current relative to IF networks 

than predicted from FIG. 5. We need to keep this in mind, since it indicates that RS networks 

receive on average even more background noise, relative to IF networks, for the same 

spontaneous firing rate. 

After calibration, all three networks maintain ongoing activity at the level of approximately 30-

40 Hz. Such a high frequency is not quantitatively matching the spontaneous firing rate of 

cortical networks that is about 1-5 Hz (Amit and Brunel 1997). However, we were interested here 

in activity regimes where RES networks can robustly self-sustain activity in the absence of any 

input. For the particular model used in this study, the range is around 30-60 Hz. In any case, a 

direct quantitative comparison to cortical dynamics would be tentative and speculative. 

Following a period of stabilization of activity, the networks are stimulated using a population of 

100 input neurons that project to all three networks. The input connections of the networks are 

structurally identical, while the synaptic amplitudes are calibrated to address the excitability issue 

discussed in section Excitability. Hence, all networks receive the same stimulation pattern. The 

networks are stimulated for 50 ms with a Poisson input of 20 Hz (see FIG. 9a). Then, they are 

allowed to freely evolve for another 1450 ms, after which the process is repeated. Each such 1500 

ms interval represents a trial. During the trial, we recorded the population rates (Π) and average 

membrane potentials. 

Insert FIG. 9. about here. 

We investigated the response properties to input by averaging the population rates over 100 

trials, aligned to the beginning of the trial (similar to Peri-Stimulus Time Histograms - see 

Gerstner and Kistler 2002), for 50 networks of each type. Results shown in FIG. 9a suggest that 

the most responsive network is by far the IF-network. Because of the rather strong depolarizing 

background current required for spontaneous activity and the internal network bombardment, IF 
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neurons have an average membrane potential of -53.69 mV (FIG. 9b), between the resting 

potential of -70 mV and the threshold of -45 mV. This phenomenon probably leads to a so-called 

“high conductance state” in which neurons become more responsive to input as the slope of the 

gain function is modulated (for a review, see Destexhe et al. 2003). Please note that even though 

we use a linear leaky integrate-and-fire model, the conductance based model of the synaptic 

currents yields an “effective membrane conductance” that is modulated by the depolarization 

level of the neuron, giving rise to the “high conductance state” (Rudolph and Destexhe 2006). 

Both the “high-conductance states” as well as recurrent self-excitation of subgroups of neurons 

could be the cause for such a robust response of IF networks to input. As indicated in FIG. 8a and 

b, for strong coupling and without background current, the recurrent excitation produces rapid 

activity buildup that is hardly compensated by inhibition. This indicates that the recurrent groups 

are a major source for such a high responsiveness. Furthermore, the relatively slow convergence 

of the population activity back to the baseline of 30 Hz (FIG. 9a) suggests that activity is 

reverberating for a while, due to these intrinsic recurrent groups in the network. 

Although RS networks are bombarded with background currents more than 5.5 fold larger in 

amplitude compared to IF networks, they tend to be much less responsive. As the excitability 

landscape in FIG. 3 middle-left suggests, RS neurons have some weak resonance properties and 

tend to dampen high input frequencies in suprathreshold regime. In the subthreshold regime, for 

low frequencies, RS neurons have relatively reduced input impedance (FIG. 1). These properties 

probably impair or slow down the formation of recurrently excited groups, for weak coupling in 

the network (consistent with FIG. 7b). Moreover, RS networks display a rapidly decaying tonic 

response followed by a very prominent dip in the activity after the stimulation ceases (FIG. 9a). 

The latter phenomenon might be related to the adaptation properties of RS neurons (Izhikevich 

2003) and is clearly reflected in the hyperpolarizing phase of the average membrane potential 
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trace (FIG. 9b). Adaptation is likely to be involved also in the progressive reduction in response 

during the stimulation (FIG. 9a, from 20 to 50 ms). Overall, the effect of the input stimulation is 

maintained for quite a long time, close to that of IF networks (FIG. 9a, from 0 to 120 ms), 

although it consists of both an excited and a hyperpolarized phase. 

RES networks are the least responsive, having a quite weak response to input stimulation. The 

firing rate of such networks increases less, relative to IF or RS networks, albeit the effective input 

drive is similar (calibrated based on FIG. 5, as mentioned before). Moreover, the effect of 

stimulating RES networks quickly vanishes after the stimulation is removed (they return close to 

the baseline level almost simultaneously with the ceasing of the input, displaying a dampened 

oscillation arround baseline – see FIG. 9a). This indicates a high reluctance of RES networks to 

rate changes induced by the stimulus. They have low responsiveness to input and exhibit fast re-

stabilization of the activity to the homeostatic baseline level. Altogether, such evidence suggests 

that RES networks are prominently homeostatic, with very stable activity, however reluctant to 

external drive. 

 

Activity patterns 

The patterns of activity in the three types of networks are dramatically different as suggested 

also in FIG. 6 (in spite the fact that they have the same architecture). We wanted to assess the 

relation between the response properties of IF, RS and RES neurons and the resulting activity 

patterns that are produced by the three types of networks. We considered the same protocol as 

presented in the previous subsection Network excitability, with triplets of networks firing at a 

baseline level of about 30-40 Hz and being stimulated with 20 Hz Poisson inputs lasting 50 ms. 

In each trial, we monitored, in addition to population rates and average membrane potentials, also 
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the population inter-spike interval (ISI) randomness, a new measure that we introduced in order 

to characterize the activity patterns in the networks. 

Insert FIG. 10. about here. 

The population ISI randomness (SISI) measures the degree of disorder in the ISIs of a population 

of neurons during a given time window. In some sense, the SISI is similar to the concept of 

entropy. We defined the population ISI randomness as follows (see also APPENDIX). The spikes 

of a population of neurons are recorded in a sliding window of 150 ms. All ISIs of all neurons in 

the window are computed and we denote the total number of ISIs with NISI. NISI depends both on 

the number of neurons considered as well as on the number of spikes they fired within the time 

window. Next, the values of ISIs are clustered such that each cluster contains all ISIs that are 

within a range of ±10% of the value of the cluster center. A number Ncind of independent clusters 

is determined (see APPENDIX for details). The population ISI randomness indicates the fraction 

of independent clusters relative to the total number of ISIs.  

ISI

ind
ISI N

NcS =       (15) 

In other words, SISI shows how many independent values of the ISIs (with a tolerance of 10%) 

are required to describe the whole window, for all neurons. One could see it as a ratio of 

information compression. If all neurons were firing with the same ISI (for example being aligned 

to a common oscillation cycle), one number would be enough to represent all the ISIs in the 

window and SISI would be the lowest (1/NISI). If each neuron fired with a different ISI at different 

moments such that all ISIs in the window were significantly different, the randomness measure 

would approach a value of 1. 

The advantage of the population ISI randomness measure is that it is able to quantify the degree 

of disorder in the activity of a population of neurons, independently of the ISI distribution. Other 

techniques of estimating the degree of randomness, like computing the coefficient of variation Cv 
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(Softky and Koch 1993), deal only with one neuron at a time and are only applicable if the ISI 

distribution is unimodal. The RS and RES networks frequently engage in oscillatory behavior 

such that the ISI distributions can be bimodal (one peak for the inter-cycle distance and one peak 

for the in-cycle bursting). In some sense, the population ISI randomness would correspond to 

computing the coefficients of variation in different sub domains of the ISI distribution that are 

centered upon the local peaks of the distribution. 

The disadvantage of the population ISI randomness measure is that it is influenced by the firing 

rate. Even for stationary firing processes, a higher firing rate yields a lower randomness, because 

of the clustering of ISIs that is more precise for smaller values of ISIs. Since our three networks 

fire with the same spontaneous rate, the comparison of the three SISI values is not affected by this 

issue during the stationary non-stimulated phase (FIG. 10a). 

After the initial stimulation phase, the networks undergo severe reorganization. This is reflected 

by the change in SISI, depicted in FIG. 10a. As mentioned before, because of the strong rate 

increase, the ISI population randomness decreases in all cases since ISIs get smaller. However, 

after this non-stationary phase, networks get back to the stationary spontaneous activity during 

which SISI is constant. Interestingly, the IF networks have the highest stationary ISI randomness, 

even though RS networks have the strongest background random drive (recall the remark from 

the calibration of input currents to provide spontaneous activity in IF and RS networks). This 

indicates that IF neurons are not capable of coupling into preferential firing patterns, unlike RS 

neurons which can take advantage of their adaptation and weak resonant properties to produce 

preferential ISI intervals and can couple into robust oscillatory firing patterns (FIG. 6). As 

expected, RES networks have the lowest ISI randomness because there is no random background 

current and because neurons have preferred ISIs due to their membrane resonance, inducing a 

highly ordered activity (FIG. 6). 
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We also computed the ISI distributions of IF, RS and RES networks during the stationary phase 

of a trial. IF networks have the highest spread of the ISI distribution (FIG. 10b), indicating the 

highest disorder, just as predicted by the ISI population randomness. The ISI distribution of RS 

networks is more compact and less spread (FIG. 10c) because RS neurons fire more regularly 

than their IF counterparts. In the case of the RES networks, the precision of firing is remarkable, 

neurons having preferred ISIs (FIG. 10d) in the range of 25-40 ms, close to the period of 

subthreshold membrane oscillation (FIG. 4) and consistent with their frequency preference (FIG. 

1). 

The ISI population randomness and ISI distributions suggest that resonant properties endow a 

network with more regular and precise firing, favoring the onset of oscillatory activity. On the 

other hand, integrative properties endow a network with more degrees of freedom, enabling it to 

accommodate random patterns of activity.  

 

Relationship with other mechanisms contributing to stable spontaneous activity 

So far we have investigated in what way the membrane properties of network neurons influence 

the stability of reverberating microcircuits, their responses to stimulation and their patterns of 

activity. We next considered other potential mechanisms that can contribute to stable 

spontaneous activity of microcircuits. First, we investigate the importance of miniature synaptic 

potentials in providing a “lower bound” for the activity of RS circuits. Then, we search for other 

potential sources of stability providing the “higher bound” of network dynamics, such as synaptic 

delay mechanisms. 

Miniature synaptic potentials (minis). Following a previous study of Timofeev and 

collaborators (see Timofeev at al. 2000) and recent evidence about the properties of minis (Paré 

et al. 1997, 1998) we next considered the RS circuits used in section “Self-sustainability and 
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stability” and added one extra excitatory synaptic conductance to each RS neuron (mini 

conductance). To simulate spontaneous release, the mini conductances are changed (increased), 

on average with a frequency of 20 Hz (see Paré et al. 1997). Each spontaneous conductance 

increase has amplitude that is randomly drawn from a uniform distribution with a maximum 

specified value ∆g-max (in Eq. 7, for the case of mini conductances, g is increased with a random 

amplitude having a specified maximum of ∆g-max = 8, 8.5, 9, 9.5, 10, depending on the 

experiment). The mini conductance parameters have been chosen such that the amplitude of mini 

PSPs was in the physiological range of 0.1 to a few millivolts (Asyn-mini = 0.0035 uS, Wsyn is 

randomly drawn from a uniform distribution with a mean of 1.56±0.88, τsyn = 10 ms, Esyn = 0 

mV). Each network is simulated for 100 seconds (105 steps) and results are averaged across 50 

random networks. 

Insert FIG. 11. about here. 

 
Two crucial parameters influence the behavior of these networks: the coupling strength within 

the network (Asyn-RS) and the average amplitude of the mini PSPs (controlled by ∆g-max). For 

weak coupling and small amplitude of minis, the RS networks fire in a tonic fashion with very 

low firing rates (0.2 to 0.9 Hz), dependent on the amplitude of the minis (FIG. 12b). As the 

coupling in the network is increased, for a relatively narrow range of parameters (Asyn-RS ∈ 

[0.02..0.03]), the activity becomes bursty (FIG. 12c), with high peaks of the population rate and 

burst-like firing of RS neurons (FIG. 11). If the coupling is further increased, the RS networks 

become “explosive”, just as reported before in FIG. 7b. Please note that the coupling values for 

the transition from tonic to bursting regimes correspond to the critical region of transition from 

“dying out” to “explosive” behavior of the RS networks in FIG. 7b (corresponding to a reference 

Asyn-RES between 0.04..0.07). 

Insert FIG. 12. about here. 
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At the onset of burst-like firing, the bursts occur rather irregularly with very long inter-burst 

intervals (on the order of tens of seconds) and have low amplitudes (computed from the 

population rate). As the network coupling is increased, bursting becomes more reliable and has 

higher amplitudes (FIG. 12c, d and e). If, in addition the amplitude of minis is increased, the 

bursting process becomes more and more periodic (FIG. 12g and h). 

There are several interesting observations. First, although the mean population rates (FIG. 12a) 

increase rapidly with increasing network coupling and mini amplitude, the mean baseline 

population rates (not including the bursts) increase steadily and much slower (FIG. 12b). This 

indicates that the average network activity, excepting the bursts, scales slowly with network 

coupling and mini amplitude. The network activity becomes high only in the vicinity of bursts 

indicating a “runaway-like” recurrently-amplified, self-excitation process that is network 

dependent. This argument is supported even further by the fact that the burst amplitude does not 

seem to depend on the amplitude of the miniature PSP’s. In FIG. 12d and e, the means of the 

burst amplitude distributions, for the same coupling but different mini PSP amplitudes, are very 

close to each other. The means of these means and their standard deviations are shown in FIG. 

12f computed for the three couplings where bursting occurs (0.025, 0.0275, 0.03), across all mini 

PSP amplitudes. The mean burst amplitudes increase linearly and their standard deviation 

(computed across different mini amplitudes) is small. On the other hand, the number of bursts for 

the same coupling strength depends critically on the mini PSP amplitudes (see the dependency of 

the size of the distributions in FIG. 12d and e on the mini amplitudes). 

These results suggest that the bursting of the network is not driven (although it might be 

initiated) by a chance synchronous accumulation of miniature PSPs but is rather a recurrent 

activity self-amplification process that is network dependent. The burst process is a property of 

the network and this is consistent with previous findings (Timofeev et al. 2000). The amplitude of 
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miniature PSPs, on the other hand, influences the probability that the network will burst and, in 

addition, whether this bursting is periodic (FIG. 12g and h). The position of the peak of the inter-

burst interval (IBI) distributions does not seem to depend on the network coupling but only on the 

mini PSP amplitudes. The sharpness of this peak is however modulated by the network coupling 

(FIG. 12g and h). 

To summarize, depending on the values of the two critical parameters (network coupling and 

mini PSP amplitudes) RS networks can produce three activity regimes: tonic, aperiodic bursting 

and periodic bursting (FIG. 12i). The bursting and its dynamics (amplitude) are properties of the 

network, while the probability of initiating a burst and the periodicity of bursts depend on the 

amplitudes of the miniature synaptic potentials.  Finally, the spike-frequency adaptation of RS 

neurons is very likely to be involved in extinguishing these bursts and preventing “explosion”, for 

the narrow coupling, at the threshold between stable and “explosive” dynamics. 

Synaptic delays. We investigated next the influence of synaptic delays on the networks 

described in section “Self-sustainability and stability”. We considered exactly the same type of 

networks and experimental setup and additionally introduced synaptic delays. We defined a 

maximum propagation delay for the most distant pair of neurons, ranging from 20 to 100 ms. 

Resonant networks remain very stable and become self-sustained even earlier than shown in FIG. 

7, for a reference coupling of Asyn-RES = 0.001. 

Insert FIG. 13 about here. 

The self-sustained duration of IF networks’ activity does not seem to be significantly 

modulated by delays (FIG. 13a) and, although there is a weak trend towards longer self-sustained 

durations, there is no dramatic improvement compared to the “no delay” condition (see FIG. 7a). 

On the other hand, the RS networks’ self-sustained durations are significantly modulated by 

synaptic delays (FIG. 13b). For relatively long propagation delays, they can sustain activity up to 
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the entire experiment duration (200 ms). However, we have to mention that this phenomenon is 

by no means comparable in robustness to the self-sustained regime of resonant networks, which 

can sustain activity for indefinitely long periods. 

Regarding “explosive” behavior, IF and RS networks become less “explosive”, hence more 

stable, and the synaptic coupling for which runaway activity occurs is strongly modulated by the 

amplitude of synaptic delays (FIG. 13c and d). Longer delays favor more stable dynamics and the 

“explosive” process progresses slower (the slopes of the population rate increase during 

“explosion” are smaller than those in FIG. 8). 

Our results suggest that integration alone cannot take full advantage of synaptic delays in 

maintaining robust ongoing activity, except for the fact that IF networks become less “explosive”. 

The excitation in the network is quickly lost by integrator neurons because of a temporal spread 

of action potentials due to delays, which impairs synchronization and affects integration. 

Probably other additional factors would be required, such as long synaptic time constants, 

corresponding to NMDA mediated neurotransmission, for example. In contrast, RS networks’ 

activity is much stronger modulated by synaptic delays. The frequency adaptation and weak 

resonant properties of RS neurons, together with the synaptic delays that prevent “explosion”, 

allow RS networks to become quite robustly self-sustained. As a final conclusion, synaptic delays 

provide a robust “upper bound” of activity by preventing activity “explosion”. However, they are 

not sufficient to stabilize the “lower bound” of network activity in general, for which the 

membrane properties of the neurons become crucial. 
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DISCUSSION 

 

We have shown that the response properties of different neural models can dramatically 

influence the behavior of networks based on such models. In particular, we have studied two 

basic properties of the membrane dynamics: integration and resonance. We discussed how 

different models have very different behavior in terms of excitability and response property as a 

function of the temporal structure of the input spike trains. At one extreme, the integrate-and-fire 

model prefers high frequency inputs and shows no adaptation. At the other extreme, resonant 

neurons have preferred input frequencies, dampening high input bombardment while being quite 

sensitive to weak inputs. This property has important consequences for the homeostasis of 

network activity. We outlined the ability of networks built with resonant neurons to robustly 

maintain spontaneous activity in the absence of any stimulation. In turn, this homeostatic regime 

impairs the responsiveness of resonant networks to external stimulation. We concluded that 

resonance facilitates the stability of network dynamics at the cost of sacrificing responsiveness, 

while integration provides reliable responsiveness but sacrifices stability.  

Additionally, we investigated the relationship between membrane properties and other 

processes potentially contributing to stable spontaneous activity:  miniature synaptic potentials 

and synaptic delays. Miniature synaptic potentials can endow networks of regular spiking 

neurons with spontaneous activity. The spike-frequency adaptation of these neurons together with 

recurrent excitation lead to burst-like firing, often observed in vivo during slow-wave sleep states 

(Steriade et al. 1993; Timofeev et al. 2000; Steriade 2006). The bursting is a property of the 

network while the number of the bursts and their periodicity depend on the amplitude of mini 

PSPs. Regarding synaptic delays, we have shown that they can provide an upper bound on neural 

activity, preventing “explosive” dynamics. However, even with synaptic delays, membrane 
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properties become essential for providing stability at the “lower bound” of neural activity and 

allowing network reverberations to sustain ongoing dynamics. 

 

Generality of results 

The present study relies on specific models of neurons and it should be made clear that there is 

no attempt here to model brain activity quantitatively. The IF model is probably the most popular 

and is used for large-scale simulations of neural microcircuits, being well known for its purely 

integrative properties. The Izhikevich RS and RES models exhibit other interesting dynamical 

behaviors like adaptation and resonance, being relevant to our discussion. We explicitly studied 

the properties of these specific models and there is no guarantee that they would directly translate 

to the brain. For example, the spontaneous firing rate attained by our resonant networks was in 

the range of 30-50 Hz, rather incompatible with the 1-5 Hz spontaneous activity of the cortex. It 

could be suggested that such an elevated firing rate would be more appropriate to account for 

persistent rather than spontaneous activity. However, persistent activity involves multi-stability 

(Durstewitz and Seamans 2006), such that the sustained activity pattern could be switched on or 

off. In our case, the resonant networks maintain their activity in a homeostatic manner, and there 

is no multi-stability involved. The spontaneous firing rate of our resonant networks is stable 

around 30-50 Hz because of the particular choice for the model that resonates at such high 

frequencies. It is known however that thalamo-cortical neurons can display resonance at low 

frequencies as well (Hutcheon and Yarom 2000). This low frequency resonance (1-2 Hz) matches 

well the spontaneous firing frequency in cortical networks (1-5 Hz). 

Regarding the RS model, we have to mention that the classification into spiking classes has 

been done according to the response of cells to step input currents. In the cortex, cells can often 

change their firing properties such that regular-spiking cells can become intrinsically-bursting 
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during sleep or anesthesia (Timofeev et al. 2000). The fact that in our model, RS cells have weak 

resonant properties and that in the cortex pyramidal cells are often regular spiking cells should 

not be considered as evidence that excitatory neurons in the cortex do not resonate. Actually, real 

cells can switch between different dynamical modes and the pyramidal neurons (sometimes 

classified as RS cells) can display resonant behavior (Hutcheon and Yarom 2000; Fellous et al. 

2001). The types of neurons used in our simulations are “toy models” compared to the 

complexity and versatility of biological neurons. No direct correspondence should be made 

between our model neurons and cortical neuron types. 

Nonetheless, since most of our results are rather qualitative, based on comparing different 

networks, the presented findings become general enough to allow for meaningful conclusions. 

We only compare how integration and resonance would affect the activity of otherwise identical 

networks of spiking neurons and show that these two properties endow large-scale neural circuits 

with very different dynamical behaviors. We have to mention that the presented phenomena were 

remarkably robust for all network architectures and sizes that we tested. For the case of resonant 

networks, we show that robust self-sustained activity can be attained in the absence of any 

external stimulation. We are not aware of any other study showing that such robust ongoing 

activity can be produced in artificial neural microcircuits without background input. This opens 

new possibilities for studying completely deterministic networks whose spontaneous activity is 

solely maintained by the interactions in the network. 

 

Membrane properties, network dynamics and cortical processes 

As we have seen, the membrane properties of neurons in large networks dramatically determine 

their behavior. Integration and resonance endow networks with responsiveness and versatility on 

one hand and temporal precision and stability on the other, respectively. But other neural 



 39

properties that stem from membrane dynamics, such as spike-frequency adaptation, can 

contribute to the production of specific patterns of network activity. For example the adaptation 

and the intermediate response property (between integration and resonance) of RS neurons lead 

to oscillatory network bursting under the influence of miniature synaptic potentials. Moreover, 

various network properties such as synaptic delays, have differential effects depending on the 

membrane properties of the constituent neurons. In our study, we have shown that in spite of 

strong network coupling and synaptic delays, purely integrative networks are not able to sustain 

activity for long durations, as opposed to RS networks that take advantage of both. In the context 

of the homeostasis of network activity, there are probably many more, other relevant processes, 

acting on multiple levels, from synapses to global neuromodulation. They are differentially 

expressed during various cortical states and their interaction is most likely non-trivial. It remains 

a future challenge to investigate the role of each such process individually and even more so, in a 

collective framework. 

There are several remarks that have to be made, before concluding this study. First, neurons 

were considered for a long time to behave as integrators and this is reflected by the 

overwhelming number of studies based on the integrative paradigm, especially in modeling. 

Other properties of neurons, like resonance, have only relatively recently been emphasized and 

explicitly explored. In the experimental field there is accumulating evidence that real neurons 

have rather pronounced resonant properties. Resonance has been found in the somatosensory 

cortex (Hutcheon et al. 1996; Ulrich 2002), prefrontal cortex (Fellous et al. 2001), entorhinal 

cortex (Erchova et al. 2004; Schreiber et al. 2004), thalamus (Puil et al. 1994), hippocampus 

(Leung and Yu 1998) and interneurons (Pike et al. 2000). It has been suggested that resonance 

could play an important role in selective communication between neurons (Izhikevich 2002) and 

that neurons can communicate their frequency preference to post-synaptic targets leading to a 
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complex interplay with their firing rate (Richardson et al. 2003). It was also shown that the 

intrinsic properties of the cellular membrane could have a major impact on frequency-dependent 

information flow in the hippocampus (Erchova et al. 2004). Taken together, these facts 

emphasize the importance of resonance in neural circuits. In addition, we suggested here that 

resonance could play a very important role in the homeostasis of network activity and that it 

affects quite significantly the response properties of recurrent networks to input stimulation. 

Second, there is rapidly accumulating evidence that neural systems posses homeostatic 

regulatory mechanisms, spanning several levels of organization (Turrigiano and Nelson 2004; 

Davis 2006). Such regulatory processes can act at the level of synapses as well as within the cell 

itself, changing its global properties. They can be slow (intrinsic plasticity, synaptic scaling) or 

relatively fast (short-term plasticity, spike-frequency adaptation). To the best of our knowledge, 

resonance has not yet been explicitly suggested to play a homeostatic role in regulating network 

activity. As we have shown here, resonance can dramatically contribute to the stabilization of 

network dynamics and we suggest that it could be a very robust homeostatic mechanism. 

Resonance is a global property of the cell’s response (not local, like synaptic mechanisms) and it 

is fast. We also have to mention that the homeostatic regulation of network dynamics through 

resonance is more a passive process as opposed to the common notion that homeostasis is an 

active process involving the change of cellular and synaptic properties over time (Turrigiano and 

Nelson 2004). 

Third, resonance at the membrane level can facilitate networks to engage into oscillatory 

behavior. Neurons with the same preferred inter-spike intervals tend to periodically lock into 

coherent oscillatory patterns. We also find that resonant networks display marked oscillations 

(FIG. 6) and our observations are consistent with the idea that intrinsic membrane properties 
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dramatically affect the ability of networks to produce oscillatory patterns of activity (Lampl and 

Yarom 1997; Hutcheon and Yarom 2000; Geisler et al. 2005; Buzsáki 2006). 

A very important aspect related to resonance is that it can be modulated. Recent studies suggest 

that resonant behavior is voltage-dependent. For example, cortical pyramidal neurons have two 

resonant frequencies (1-2 Hz and 5-20 Hz), depending on the level of depolarization of the cell 

(Puil et al. 1994; Hutcheon et al. 1996; Lampl and Yarom 1997; Hutcheon and Yarom 2000). 

This finding is very important for the following reason. On one hand, it has been suggested that 

resonance underlies oscillatory behavior in cortical networks. On the other hand, there is 

accumulating evidence for the association between neural oscillations and attention (Fries et al. 

2001). It is possible, in principle, that attention-related oscillations can be produced by 

modulating resonance via adjustment of the average membrane potential. Similar suggestions, but 

in a different form, have been made by Bazhenov et al. (Bazhenov et al. 2005) who proposed that 

resonant properties together with synaptic coupling can contribute to the control of information 

flow in cortical networks. The finding that robust oscillations can be mediated by resonance calls 

for future investigations of the complex interplay between membrane potential, resonance, 

oscillatory behavior on one side, and attention, on the other. 

Fourth, our results suggest that resonance induces more temporally structured activity than 

integration, at the expense of reluctance to external stimulation. Even with significantly high 

external noise, neural adaptation and resonance allow a network to produce more regular firing 

(RS in FIG. 10). Increased reliability of firing relying on membrane resonance phenomena have 

also been described experimentally (Fellous et al. 2001) and theoretically (Bazhenov et al. 2005). 

Since resonance restricts the degrees of freedom for the firing of neurons, external stimulation 

causes temporal reorganization rather than firing-rate response in resonant networks (FIG. 9a). 

Conversely, networks featuring pure integration are very sensitive to external excitation and 
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respond with increased firing rate. They are more prone to firing-rate signaling and exhibit less 

temporally organized activity (FIG. 9 and FIG. 10). These observations hint towards two 

different ways of representing information in cortical networks that could be supported by 

resonance and integration: temporal versus firing-rate coding. 

The more temporally structured firing of resonant networks can be related to other important 

aspects. It was recently found that homeostatic mechanisms play a crucial role in the developing 

nervous system, regulating spontaneous activity (Turrigiano 2006; Turrigiano and Nelson 2006). 

However, it is not only the level of spontaneous activity that is important, but also the 

spatiotemporal patterns of activity produced therein (Torborg and Feller 2005; Turrigiano 2006). 

Our findings suggest that resonance can be involved both in maintaining homeostatic 

spontaneous activity and in shaping the spatiotemporal structure of the network dynamics. 

Furthermore, as we have seen, resonant neurons can fire at remarkably regular intervals (FIG. 

10d). Such regular firing patterns have been observed already in the pyramidal tract, in the early 

studies of Evarts (Evarts 1964). Interestingly, later it became generally accepted that neurons in 

the cortex fire rather irregularly (Tuckwell 1989; Softky and Koch 1993) but recently the 

regularity of firing was shown to depend on the cortical state, as well as on the optimality of 

driving the neurons (Gur and Snodderly 2006). Since there is evidence that resonance can be 

modulated in a voltage-dependent way, we suggest that cortical neurons might switch between 

resonant and integrative behavior as their membrane potentials are influenced by the cortical 

state. As it was shown in our study, these two properties could induce regularity or randomness, 

respectively, in the activity of recurrent microcircuits. 

Finally, we believe that integration and resonance are two different mechanisms that might be 

functionally relevant to the cortex. Integration is favorable to processing rate codes and promotes 

high sensitivity of recurrent networks to inputs. At the other extreme, resonance contributes to the 
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homeostasis of network dynamics and supports more temporal-like codes, while promoting 

oscillatory behavior. These two mechanisms might interact in the brain to produce dynamics that 

are complex and sensitive to inputs, yet stable. In general, as we have seen in this study, 

membrane properties of neurons determine to a large extent how various processes influence 

network dynamics. The equation involving voltage-dependent resonance, integration, 

homeostasis, excitability, oscillations, attention, activity patterning and many other phenomena is 

likely to be complex, but deserves thorough and sustained future investigations. 
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APPENDIX 

We present in more detail the algorithm used to compute the population ISI randomness, SISI. 

Let us consider a population of 3 neurons that fire spikes quite randomly, with ISIs given in 

APPENDIX FIG. 1. 

Insert APPENDIX FIG. 1. about here. 

To compute the population ISI randomness at time t using a sliding window of 150 ms, the first 

step is to compute the ISIs of neurons for the window centered at time t. Next, using all the ISIs 

in the window, a population ISI histogram (HISI) is computed (it takes all ISIs from all neurons). 

An example histogram is depicted in APPENDIX FIG. 1 (bottom). We use a 1 ms bin to compute 

the histogram.  

Based on HISI, we compute the number of independent ISIs by clustering ISIs into groups that 

are spanning 10% the value of an ISI cluster center. The clustering algorithm, described below, 

sequentially iterates HISI and tries to determine if, for the current ISI, there is an already 

determined cluster center (with a lower ISI value) that is less than 10% apart from it. If such a 

cluster is found, then the ISI belongs to the previous cluster, otherwise it becomes the center of a 

new cluster. The algorithm then moves to the next ISI and repeats the same procedure, until all 

the HISI has been analyzed. We obtain a number of ISIs that are independent from each other 

(Ncind) within 10% of their respective values. For example, a cluster having a center at 20 ms, 

would contain all ISIs between 20 and 22 ms, while a cluster with the center at 100 ms would 

contain all ISIs between 100 and 110 ms. 

The final value of SISI at time t is the ratio between the number of independent ISIs and the total 

number of ISIs (see APPENDIX FIG. 1). 

The exact algorithm given below: 
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Variables: 

HISI[] Array containing the histogram of ISIs, 
with a bining of 1 ms 

NISI Total number of ISIs in the window 
Ncind Number of independent clusters 
last Auxiliary variable used to memorize the 

position of the last computed cluster 
center 

WISI Window size used to compute SISI

found Flag variable checking if any non-zero ISI 
count value HISI[k], is found at k between 
0.9*i and i-1, where i is the value of the 
ISI being probed 

left Starting index for counter k (taken 0.9*i) 
right Ending index for counter k (taken i-1) 
SISI The population ISI randomness 

 

Algorithm (computes SISI for a given window of size WISI): 

Compute HISI; 

NISI  := 0; 

Ncind := 0; 

last := -1; 

 

FOR i:=1 TO WISI DO 

IF(HISI[i] > 0) THEN 

//Set the bounds to search for a cluster center smaller than i 

found := FALSE; 

left := Round(0.9*i); 

right := i-1; 

//Try to find an ISI smaller than i, within 10% of i 

FOR k:=left TO right DO 

IF(HISI[k] > 0) THEN found := TRUE; 

ENDFOR; 

 //If an ISI is found, but it is not a cluster center 

IF((found) AND ((i-last)>(i-left))) THEN 

found := FALSE; 

ENDIF; 

//Make a new cluster center if a smaller one was not found 

IF(NOT found) THEN 

Ncind := Ncind + 1; 

last := i; 
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ENDIF; 

//Integrate the HISI to compute NISI 

NISI := NISI + HISI[i];  

ENDIF; 

ENDFOR; 

 

SISI := Ncind / NISI. 

 

The algorithm searches for ISIs that occur in the window (they have HISI > 0). For each ISI, i, it 

tries to determine whether there is a cluster center already determined, within less than 10% of i, 

smaller than i. If such a value exists, and it is a cluster center, then i belongs to the last computed 

cluster denoted by last. If no such value is found, then i is an independent cluster center, and 

Ncind is incremrented, last being moved to i. Additionally, the algorithm computes the total 

number of ISIs (NISI) in the window by integrating the histogram HISI. 

Finally, the SISI at moment t is computed by dividing the number of independent clusters by the 

total number of ISIs. The window is shifted by 1 ms forward and the procedure is repeated for 

moment t+1. The time-resolved SISI (FIG. 10a) is obtained by computing SISI for each moment in 

time spanning a trial. 
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FIGURE LEGENDS: 

FIG. 1. Frequency response characteristics of IF, RS and RES neurons to subthreshold input. The 

neurons are stimulated using a ZAP function (see text for details) and the deviation from rest of 

their membrane potentials are monitored. The frequency spectra of the membrane potential 

responses are divided by the frequency spectrum of the input current to yield the frequency-

dependent impedances. 

 

FIG. 2. Structure of input spike trains used to assess the suprathreshold frequency response of 

model neurons. For each frequency of interest (5 to 100 Hz), a Poisson spike train with that mean 

frequency is produced. The spike trains have different lengths Ws (right) to insure, on average, 

roughly the same number of input spikes received by the model neurons for all frequencies. The 

spike trains are only partially plotted (dots).

 

FIG. 3. Response properties of model neurons to Poisson input spike trains. The total number of 

spikes (Ψ) in response to various input frequencies and synaptic amplitudes is plotted on the left 

side. The input spike trains have the structure reported in FIG. 2. On the right, the responses were 

normalized to the length of the stimulation window (Ws), yielding the firing rate response (R) of 

the model neurons (see text for details). The ranges of the synaptic amplitude for different models 

are considered according to a calibration procedure presented in section Excitability. 

 

FIG. 4. Effect of an afferent spike arriving at t=10 ms on different neural models. While the IF 

and RES models are quite excitable, having large PSP amplitudes, the RS model is responding 

with much smaller amplitudes. Note that although the synaptic amplitudes (Asyn) for excitatory 

and inhibitory synapses are equal, the actual amplitudes of the two currents are different due to 
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the difference in driving force of excitatory (reversal potential 0 mV) and inhibitory (reversal 

potential -90 mV) synapses at rest (see Eq. 5). 

 

FIG. 5. Ratios between the PSP peak amplitudes for different models, as a function of synaptic 

amplitude (Asyn). 

 

FIG. 6. Activity patterns in three microcircuits with identical architecture but different excitatory 

neuron models: IF, RS and RES (spikes of 100 neurons shown for each). After a stimulation 

phase lasting 50 ms (leftmost spikes, before vertical marker line), the circuits evolve freely (RES) 

or under the influence of random background currents (IF and RS). The activity patterns look 

quite different: RES exhibits high frequency oscillations; RS produces some lower frequency 

oscillations, rather irregularly; IF displays very irregular activity with some inhibited phases 

around 400 and 800 ms. The after-stimulation response looks quite different in the three cases 

(50-150 ms on the left of the spike raster, following the 50 ms vertical marker). Examples of 

typical autocorrelograms computed on the spike trains of the microcircuits are shown on the right 

(computed for stationary spontaneous dynamics, not normalized). 

 

FIG. 7. Self-sustainability of 2000 triplets of networks (with IF, RS and RES excitatory neurons), 

as a function of synaptic amplitude. The networks are stimulated for 20 ms with a 30 Hz Poisson 

input and then allowed to evolve freely for 200 ms. Mean and standard deviation of the self-

sustained duration of the activity is presented in a. In b, the percentage of networks that display 

“explosive” behavior is plotted as a function of synaptic amplitude. The RES synaptic amplitude 

is taken as a reference, while the amplitudes for the IF and RS networks are rescaled according to 

FIG. 5. 
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FIG. 8. Dynamics of “explosive” behavior for IF and RS networks. The population rate is 

recorded 10 ms before and after the “explosion” of the network activity was detected. The 

threshold for the detection of “explosive” dynamics (300 Hz) is indicated by arrows. a. 

Population rate dynamics for IF and RS networks, averaged over all synaptic coupling values and 

all networks that exhibited “explosive” activity. The slope of the rate increase is higher for the IF 

case. b. Population rate dynamics of IF networks with “explosive” activity, for different reference 

synaptic amplitudes (see text for details). c. Population rate dynamics of RS networks with 

“explosive” activity, for different reference synaptic amplitudes. 

 

FIG. 9. Excitability of different networks to Poisson input of 20 Hz (only the first 200 ms are 

shown out of the total 1500 ms of the trial). a. Population rates are measured for IF, RS and RES 

networks and averaged over 100 trials and 50 network triplets (see text for details). The most 

responsive network is clearly IF, followed by RS which displays in addition a clear inhibitory dip 

after the initial response. RES networks are the least responsive to external input. b. Average 

membrane potential of excitatory neurons in IF, RS and RES networks. 

 

FIG. 10. Population ISI randomness (SISI) and ISI distributions for three different types of 

networks. a. The average SISI over 100 trials and 50 networks of each type, as a function of time 

relative to the beginning of the trial (the first 500 ms of the trial are shown). b., c. and d. ISI 

distribution for an IF, RS and RES network, respectively, during the spontaneous, stationary 

phase of a single trial. A network is considered to be stationary when the ISI population 

randomness stabilizes (the border is specified by a vertical line in a). Note that the ISI population 

randomness is dimensionless. 
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FIG. 11. RS network activity under the influence of spontaneous miniature synaptic potentials. 

For relatively strong coupling (Asyn-RS = 0.03) the network engages in frequent, short lasting 

bursting events (top trace). The network fires with relatively low frequency (zoomed-in, lower 

trace, population rate) until a burst event occurs (the population rate is smoothed with a window 

of 50 ms and a burst is considered to occur when the smoothed rate crosses the threshold of 10 

Hz). The membrane potentials of network neurons, plotted in the lower part of the figure (three 

neurons shown) display frequent, low amplitude spontaneous PSPs due to stochastic miniature 

synaptic potentials (see bottom-left inset). When a network burst occurs, many neurons engage in 

burst firing patterns (indicated by the arrow in the lower trace). 

 

FIG. 12. Dependence of the RS networks’ activity (under the influence of minis), on different 

parameters (results averaged over 130 random networks, each simulated for 105 ms). a. The mean 

firing rates of RS networks depend on the amplitude of mini PSPs (determined by the Δg-max 

parameter) and quickly grow with the increase in the excitatory coupling within the network. b. 

The mean baseline firing rates (computed by averaging over the population rate, but leaving out 

the short burst epochs) increase much slower with coupling than the mean rates. c. The number of 

bursts depends on the mini PSP amplitudes and there is a transition from tonic to bursting 

regimes induced by the coupling in the network. d. and e. Burst amplitude (computed as the 

smoothed population rate during the burst) distributions for two different network couplings 

(Asyn-RS = 0.0275 and 0.0300). The number of bursts depends on the mini PSP amplitudes but 

the mean burst amplitude is relatively constant for the same network coupling. f. The mean and 

standard deviation computed over the means of different burst amplitude distributions (for 

different mini PSP amplitudes) for the three coupling strengths where bursting occurs (Asyn-RS = 
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0.0250, 0.0275 and 0.0300). g. and h. Inter-burst interval (IBI) distributions, normalized as a 

fraction of the number of bursts for each mini PSP amplitude. i. RS networks display three 

regimes of activity, depending on the network coupling and mini PSP amplitudes: tonic, 

aperiodic bursting and periodic bursting. 

 

FIG. 13. Synaptic delays improve the stability of IF and RS networks. a. Mean and standard 

deviation of self-sustained duration of IF networks’ activity depending on different maximal 

synaptic delays. There is no significant difference over different delays and the self-sustained 

time improves very little. b. The self-sustained duration of RS networks’ activity is significantly 

increased because of synaptic delays. c. and d. Percent of explosive IF and RS networks as a 

function of synaptic coupling and synaptic delays. The propagation delays shift the threshold of 

explosion towards higher network coupling strengths. 

 

APPENDIX FIG. 1. Computing the population ISI randomness. We consider a window of 150 

ms around a particular time step t. An example of a typical window, for a population of 3 neurons 

is given (upper-left spike raster), with 7 spikes per neuron. This yields 6 ISIs for each neuron 

(upper-right table), giving a total of 18 ISIs for the entire population (NISI = 18). A population ISI 

histogram is computed in the first step (bottom chart). After applying an algorithm of clustering 

on the histogram (see text in APPENDIX), 8 independent clusters can be computed. Each such 

cluster center is denoted by black arrowheads pointing down. ISIs that are clustered together are 

denoted by bold underlines, below the x axis. The final ISI population randomness is the ratio 

between the number of independent clusters and the total number of ISIs in the window (SISI(t) = 

0.44). 
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Figure 11. 
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Appendix Figure 1. 
 

 
 
 


